-Zooming through Wood Cell Wall Ultrastructural Organization Katia Ruel Centre National de la Becherche Scientifique (CNRS)

withintelligence

wood

GREISTA NOM

The International Academy of Wood Science: IAWS Academy Lecture 2012 The Technical University in Zvolen – September 26th 2012

Plant cell walls and particularly Wood Cell Walls represent the most abundant renewable resource on this planet, with an estimated annual net primary production of land plants alone of 150-170 billion tons

Biological importance

rowth regula

Commercial importance - Fibres - Materials - Biomass uses The International Academy of Wood Science: IAWS Academy Lecture 2012

OUTLINE

- Fundamental Elements of the Wood Cell Walls
- ♦ Cellulose framework
- In situ organisation of matrix Polysaccharides and Lignins
 - Contribution of immuno-probes coupled to microscopies
 - Spatial distribution of characteristic epitopes of lignins and hemicelluloses within cell walls
 - Role of matrix components in cell wall assembly
- The Cellulosic Framework: in planta Crystalline and non-crystalline cellulose distribution

Different scales of structural observations

The International Academy of Wood Science: IAWS Academy Lecture 2012

Fundamental Elements of the Wood Cell Wall

Chemical composition

Wood cell wall components

Lignin

17-30% of the dry weight of wood

Cellulose and Hemicelluloses are all β 1→4 linked Polysaccharides and share a common backbone conformation

Cellulose: Homopolymer of 1,4-linked β-D-glucose; DP> 3000

Glucomannan:

Polymer of alterning 1,4-linked β -D-glucose and Mannose sequences

Xylans: Polymer of 1,4-linked β-D-xylose

Polysaccharides

Hemi = 25-30% of the dry weight of wood

Wood cell wall components

Lignin

17-30% of the dry weight of wood

Cellulose: Homopolymer of 1,4-linked β-D-glucose; DP> 3000

Glucomannan:

Polymer of alterning 1,4-linked β -D-glucose and Mannose sequences

Xylans: Polymer of 1,4-linked β-D-xylose

Polysaccharides

Hemi = 25-30% of the dry weight of wood

Global chemical Composition of wood cell walls: heterogeneity

	Hardy	wood	Softwood		
	<i>1ry</i> Wall	2ry Wall	Wall <i>1ry</i> Wall <i>2ry</i>		
Cellulose	23	48	21	41	
(Arabino)GlucuronoXylan	-	15-30	-	7-10	
(Galacto)GlucoMannan	3-5	2-5	3-5	18-23	
XyloGlucan	20-35	-	-	-	
Pectic Polysaccharides	34	4	32	2	
LIGNIN (s)	-	17- 21	-	24-30	

Preparative Laser Capture Microdissection and single-pot cell wall material preparation, a novel method for tissue-specific analysis Guillermo Angeles: Jimmy Berrio-Sierra: Jean-Paul Joseleau: Philippe Lorimier: Andrée Lefèbvre: Katia Ruel **Planta 224: 228-232 (2006)**

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

Katia Ruel

Total cell wall carbohydrate analysis from different cell types isolated by Laser Capture Microscopy technique. (LCM)

Parenchyma cells of Urtica dioica L.

Cell Type	Ara	Xyl	Man	Gal	Glc	
Unlignified Parenchyma	13 ± 3	50 ± 5	t	t	37 ± 4	
Lignified Parenchyma	11 ± 3	46 ± 5	t	t	43 ± 4	
Xylem Fibres	5.5 ± 1	39 ± 4	1.5 ± 1	2.7 ± 1	51 ± 4	
Sugars are expressed in relative molar proportions. Values represent the average of three replicates (± SE).						

Understanding Wood cell wall at the nanoscale

Lignin analysis from different cell types isolated by Laser Capture Microscopy technique. (LCM)

Arabidopsis thaliana

if = Interfascicular fibers vbs = vascular bundle (Vessels) Molar ratio (S:G) and relative frequency (molar %) of the H, G and S lignin-derived monomers recovered by laser capture

Line and tissue	S : G	H (%)	G (%)	S (%)	H + G + S
Col-0 ifs	0.64 (0.01)	0.72 (0.11)	60.7 (0.1)	38.6 (0.1)	3.02 (0.01)
Col-0 vbs	0.27 (0.01)	0.88 (0.03)	78.3 (0.2)	20.8 (0.2)	2.53 (0.05)
ccr1g ifs	0.51 (0.00)	1.6 (0.2)	64.8 (0.2)	33.6 (0.5)	1.98 (0.04)
ccr1g vbs	0.39 (0.00)	1.50	71.6 (0.3)	27.9 (0.3)	0.51 (0.03)

The total yield (H + G + S) is expressed in nanomoles per 100 microdissections. Standard errors between two injections are indicated in parentheses.

Tissue specific composition of fibres and vessels

Ruel et al. New Phytologist 2009

Katia Ruel

The Cellulose Framework

May be isolated by deconstruction of the cell wall, keeping physical integrity of cellulose

It is the fiber wall component of interest for new materials and polymer composites preparation

Methods allowing measurement and visualization of cellulose structure in the wood cell wall

FTIR crystalline core surrounded by « paracrystalline » sheath

Microscopy analyses
 cellulose dimensions

Immunoaffinity probe cellulose orientation;visualization of the

AFM > CMF orientation, organisation, aggregates measurements

Cellobiose unit

Cellulose Microfibrils structure and organisation

- Microfibrils are composed of parallel β-1,4linked glucan chains that are held together laterally by hydrogen bonds
- Glucose chains are arranged in a crystalline I (monoclinic) structure

он н

The number of cellulose chains that builds up one CMF is still debated: 36 glucan chains is generally admitted but recently 24 could be right for Spruce wood CMF (Ding and Himmel 2006; Gross and Chu 2010, Fernandes et al. 2011).

52	PW 0.1 - 0.3 μ m ML 0.1 - 1.0 μ m S1 0.1 - 0.2 μ m S2 1.0 - 5.0 μ m S3 0.1 μ m			Cellulose in secondary plant cell walls		
					Hardwoods	Softwoods
		Fibre	Wal	Length Width I Thickness	0.8 – 1.7 mm 10 - 40 μm 3 – 8 μm	3-6 mm $30-40 \ \mu m$ $3-8 \ \mu m$
		Microfi	bril	Length Section	100 – 150 <i>nm</i> 2 - 10 <i>nm</i>	100 – 150 <i>nm</i> 2 – 10 <i>nm</i>

From Chinga-Carrasco, Nanoscale Research Letters 2011

Cellulose Microfibrils arrangement

Orientation = MFA

Lamellar organization

Crystallinity

Cellulose microfibrils arrangement

Orientation of CMFs = MFA

 Importance of microfibrils orientation in fibre properties

MFA definition: Cellulose microfibril orientation with respect to the longitudinal direction of fiber

Lichtenegger et al., (1999) J.Appl.Cryst.,

Consequences on properties of Fibers (Stiffness): Large MFA = low stiffness

Importance for mechanical properties

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

Katia Ruel

In Planta Cellulose microfibrils arrangement Lamellar organization of CMFs

0.5µm

TEM

Kraft pulp

Secondary walls are the result of the apposition of bundles of cellulose microfibrils glued by matrix components

Populus

Cellulosic microfibril bundles forming lamellar substructures are basic structures of secondary walls

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

Katia Ruel

Common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

By computerised image analysis combined with graphical and statistical methods

The comparison of the patterns of microfibril aggregation/delamination in cell walls from the different origins

confirmed the occurrence of a common numerical rule, based on doubling/halving structures, during cell wall formation/degradation. De Micco V., Ruel K., Joseleau J-P., Aronne G.

(Planta, 2010)

Fig. 1 Microphotographs

(TEM) and incremental thickness (vi) of microfibrils and lamellae in cell walls from the four cell types: stem cells of *Populus* growing under normal conditions (**a**, **b**), cells of *G. max* hypocotyls developed in space (**c**, **d**), growing cells of CCR transformant *Arabidopsis* (**e**, **f**), pulping fibres (**g**, **h**). *Bars* 1 µm

Understanding Wood cell wall at the nanoscale

(Adapted from S. Perez)

How do Matrix Elements fit in the Cellulose Network in planta 2 (86)

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

Katia Ruel

ep

The International Academy of Wood Science: IAWS Academy Lecture 2012

In situ Organization of Matrix Components

Hemicelluloses Lignins

In situ organization of matrix componenets

Non-invasive methods

In situ organization of matrix componenets In planta Strategies to map cellwall constituents

Light microscopy (Laser confocal...)
Micro-autoradiography
Spectrotyping (XRD, FTIR, NIR, UV...)
Raman spectroscopy
Near-field microscopies (AFM,...)
Electron microscopy (SEM, TEM)
Modeling

micro/nanoscale

Internal vibration in a molecule

FT- Raman Scatterred radiation

Fourier-Transform Infrared MicroSpectroscopy

- Coupled to Microscopy
 A wall polymers distribution
- ► Coupled to Polarized light ⇒ wall polymer orientation

[investigation under mechanical stress]

Wilson et al. 2000, Plant Physiol

Coupled to Dynamic Mechanical Analysis relationship between wall

polymers and mechanical properties Ackerholm and Salmen 2003

Fourier-Transform Raman MicroSpectroscopy

Gierlinger 2006, Richter et al. 2011, Hanninen et al. 2011, Perera et al; 2012.

Complementary information concerning orientation and identification of wood polymers (particularly lignin – less precise for hemicelluloses) with a spatial resolution between 0.5 and 0.1 μ m

Predictive computerized model of the xylan and glucomannan interaction with cellulose

Improved with TEM data

From Salmen and Burgert Holzforschung (2009)

Understanding Wood cell wall at the nanoscale

Modelling provides indications

about polymer most favoured conformations
about their most favoured interactions

BUT

Not a proof of structure

Needs for better data in planta

 Qualitative Visualization and Identification of the Constituents

Respective Quantitative Repartition

Spatio-temporal Distribution

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

Katia Ruel

Our Strategy for better insight *in planta*

- Prepare New molecular probes (antibodies, Cellulose Binding Modules)
- Genetically modified model plants
- Examination of cell wall assembly during cell growth and differentiation
- Behaviour of wall components during industrial processes (Physicochemical, chemical, enzymatic treatments,...)

In situ organization of matrix components

Principle of immunolabeling

IAWS Conference, September 26, 2012 - Zvolen, Slovakia

cirs

Ruel et al.,2006, Maderas Cienc Technol Billosta et al. 2006, Cellul Chem Technol Joseleau and Ruel in New Knowledge in Wood Quality, K. Entwistle & J.C.F. Walker Eds., 2005,103-113

Kim et al.,Planta, 2010 Kim and Daniel, Planta, 2012 Koutaniemi et al., Planta, 2012

Interaction of xylans with Cellulose

In planta

Probes for Microscopy of Wood Cell Wall Hemicelluloses

Glyco-Hydrolases

endo-β(1,4)-xylanase	Xylan	Vian et al.	1983
endo-β(1,4)-mannanse	Mannan	Ruel & Joseleau	1984
β-D-galactosidase	Xyloglucan	Vian et al.	1991
α-D-glucosidase	XG	Ruel & Joseleau	1991
endo-β(1,4)-glucanase	XG	Vian et al.	1991
Cellobiohydrolase	Cellulose	Vuong et al.	1984
Antibodies against Hemicelluloses			
Anti-β-(1,4)-oligoXylose (P)	β-Xylan	Northcote et al.	1989
Anti-Xyloglucan (P)	XG	Moore et al.	1989
Anti-Xyloglucan (P)	XG	Joseleau et al.	1992
Anti-Xylan (P)	GlucuronoXylan	Awano et al.	1998
Anti-Glucomannan(P)	GlucoMannan	Maeda et al.	2000
BGM C6 (M)	(1-4)-β-mannan	Pettolino et al	2001
Anti- Xylan (P)	Xylan-/	Ruel et al.	2004
Anti-Xylan (P)	Xylan- <i>hs</i>	Ruel et al.	2004
CCRC-M1 (M)	XG (Fuc <i>t</i>)	Puhlmann et al.	1994
LM 10 (M)	Xylan-I	McCartney et al.	2005
LM 11 (M)	ArabinoXylan	McCartney et al.	2005
LM 21, LM 22 (M)	glucomannan	Marcus et al.	2010
collection of several new Mabs	glycan epitopes	Pattathil et al.	2010
Substituent Specific glucuronoxylans		Koutaniemi at al.	2012

Carbohydrate-Binding Modules

Xylan CBM (35 CBMs)	Various Xylans	McCartney et al.	2006	55

25

Two types of Xylans:

Low substitution pattern

High substitution pattern

Preparation of two antibodies against:

Unsubstituted Xylans Anti-X /

Highly substituted Xylans ------> Anti-X hs

⇒Linear and substituted Xylans have a specific topochemical distribution at the nanoscale
⇒ Distribution of linear and substituted xylans is spatio-temporally controlled
⇒This distribution is the same in cell walls having the same mechanical function

Glucomannans

in Conifer tracheids

- Mishima et al., 1998; Hannuksela et al., 2002
- Maeda et al., Protoplasma, 2000
- Hosoo et al., Planta, 2002
- Awano et al., Protoplasma, 2002
- Altaner et al., BioResources, 2007
- Prislan et al., Holzforschung, 2009
- Stevanic and Salmen, Holzforschung, 2009
- Salmen and Burgert, Holzforschung, 2009
- Kim et al., *Planta*, 2010, 2011
- Kaneda et al., JIPB, 2010
- Kim and Daniel, Planta, 2012
- Donaldson and Knox, Plant Physiol., 2012

 Iocalized to the secondary wall of tracheids with increased deposition at the S1/S2 boundary
 Iocalized in close association with cellulose
 deposited prior to lignification

Glucomannans have in Softwood a role similar to that of Xylans in Hardwood