# NATURAL CELLULOSE-BASED HIERARCHIES:

# CONCEPTS FOR NOVEL MATERIALS AND ADDED FUNCTIONALITY

George Jeronimidis Centre for Biomimetics Reading University



- Cellulose fibres from plants
- Advantages and limitations of cellulose fibres/nanofibres
- Cellulose fibres/nanofibres as reinforcement in composites
- Benefits of hierarchical structures
- Conclusions







images-mediawikisites.thefullwiki.org







# Sources of cellulose fibres and nanofibres



+ Bacterial Cellulose

## **Typical properties of cellulose nanofibres**







Young's modulus (fibre direction) Tensile strength Density

Nanofibre diameter Nanofibre aspect ratio (L/d) 134 GPa 7.5 GPa 1500 kg/m<sup>3</sup>

50 ~ 200 nm 10 ~ 30 [Frone et al., 2011] [Eichorn et al., 2010]









Young's modulus (fibre direction) Tensile strength Density

Nanofibre diameter Nanofibre aspect ratio (L/d) 134 GPa 7.5 GPa 1500 kg/m<sup>3</sup>

50 ~ 200 nm 10 ~ 30 [Frone et al., 2011] [Eichorn et al., 2010]

HOW CAN THESE PROPERTIES BE EXPLOITED EFFECTIVELY ????



#### Advantages of cellulose nanofibres (CNF)

High modulus and high specific modulus [compares well with glass, aramid an carbon]

High tensile strength

[theoretical strength of solids is of the order of E/10, CNF has a value of E/18]

#### Limitations of cellulose nanofibres

length diameter aspect ratio (L/d)

surface chemistry (compatibility with polymer matrix systems for composites)

loss of hierarchical organisation and limited control of fibre orientation (benefits of cell wall structure/density)

limited compressive strength because of fibre buckling

#### Length-diameter aspect ratio



Composite modulus for a unidirectional fibre composite as a function of cellulose nanofibre aspect ratio at a volume fraction of fibres of 50% (PP matrix)

$$L_{i} = \left(\frac{d}{\tau_{y}}\right) \left(\frac{E_{f}\sigma_{c}}{E_{c}^{continuous}}\right)$$

d = diameter  $\tau_y$  = matrix shear strength  $E_f$  = fibre modulus  $E_c$  = composite modulus  $\sigma_c$  = composite tensile strength

#### **Fibre orientation**

888

Cox Model (2D), 1952: 
$$\overline{E} = \frac{E_f v_f}{3} \qquad \overline{G} = \frac{E_f v_f}{8} \qquad v = \frac{1}{3}$$
Cox Model (3D), 1952: 
$$\overline{E} = \frac{E_f v_f}{6} \qquad \overline{G} = \frac{E_f v_f}{8} \qquad v = \frac{1}{4}$$
Tsai - Pgano Model (2D), 1968: 
$$\overline{E} = \frac{3}{8}E_1 + \frac{5}{8}E_2 \qquad \overline{G} = \frac{1}{8}E_1 + \frac{1}{4}E_2$$

#### $E_f = Fibre modulus$

 $E_1$ ,  $E_2$ ,  $G_{12}$  = Elastic and shear moduli of unidirectional discontinuous fibre composite

#### Fibre orientation, volume fraction and fibre/matrix modulus ratio



Dependence of Normalised Composite Modulus (random fibres) on fibre/matrix modulus ratio and fibre volume fraction.

 ${\sf E}_1$  is the Young's modulus of a continuous unidirectional fibre composite in the fibre direction

#### Fibre buckling in plant cell walls

















#### **Benefits from hierarchical structures**

- Compensation for limitations of unidirectional composite
- Cellular structures possible (low density)
- Beneficial fibre pre-stressing in tension (buckling)
- Control of swelling
- Multiple energy absorption mechanisms against fracture
- Modulation of multiple interfaces

#### Layered composite structures





Hygro- or thermal expansion of angleply composite structures Individual plies with non-zero coefficients of thermal expansion can create a laminate structure with zero thermal expansion coefficient

Similar effects are possible with hygro-expansivity





Energy absorption  $\propto E\varepsilon_{failure}^2$ 

Dependence of Young's modulus and failure strain in wood as a function of microfibrillar angle in S2





Fig. 4. Tensile failure in Sitka spruce (*Picea sitchensis*). Folding inward of the S2 wall as a result of cracks parallel to the microfibrillar direction.





#### Glass sponge Euplectella – hierarchical architecture

Layered structure as a defense against brittle fracture

Aizenberg et al., 2005; Weaver et al., 2007; Fratzl,2010





Semi-ductile fracture of nacre in tension (95% brittle ceramic) resulting from hierarchical organisation and control of interfaces



#### Hierarchy of nacre











#### **POLYMER MATERIAL IN TENSION**

# Transition from semi-brittle to ductile fracture induced by layered hierarchies





Jeronimidis, 1978

Bolton & J.A. Petty, 1975

Preventing fracture from bordred pits via modulation of fibre orientation

#### **GROWTH AND HIERARCHICAL STRUCTURES**







**(b)** 



(C)













The role of microtubules for cellulose fibre organisation in cell walls



#### CONCLUSIONS

- We cannot replicate growth and all its associated control, sensing and modulation mechanisms which lead to successful biological hierarchical structures
- However, we can extract principles of good composite design from biological systems which are continuously adapting and compromising
- Introducing levels of hierarchy can provide better utilisation of fibres and achieve higher levels of functionality

### **"MATERIAL" LEVEL**

#### Fibres, Matrices, Anisotropy, Heterogeneity



# **"STRUCTURE" LEVEL**

#### Hierarchies, Dimensions, Geometry, Shape

# FUNCTIONAL INTEGRATION AT THE "SYSTEM" LEVEL



