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Sources of cellulose 
fibres and nanofibres
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+ Bacterial Cellulose



Young’s modulus (fibre direction) 134 GPa
Tensile strength 7.5 GPa
Density 1500 kg/m3

Nanofibre diameter                    50 ~ 200 nm [Frone et al., 2011]
Nanofibre aspect ratio (L/d) 10 ~ 30 [Eichorn et al., 2010]
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Typical properties of cellulose nanofibres
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Typical properties of cellulose nanofibres

HOW CAN THESE PROPERTIES BE EXPLOITED EFFECTIVELY ????

www.cheme.cornell.edu

Scale bar: 3μm Frone et al., 2011Borges et al., 2008
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Advantages of cellulose nanofibres (CNF)

High modulus and high specific modulus
[compares well with glass, aramid an carbon]

High tensile strength
[theoretical strength of solids is of the order of E/10, CNF has a value of E/18]   

Limitations of cellulose nanofibres

length diameter aspect ratio (L/d)

surface chemistry (compatibility with polymer matrix systems for composites)

loss of hierarchical organisation and limited control of fibre orientation 
(benefits of cell wall structure/density)

limited compressive strength because of fibre buckling



Eichorn et al., 2010

Composite modulus for a unidirectional fibre 
composite as a function of cellulose nanofibre aspect 
ratio at a volume fraction of fibres of 50% (PP matrix)
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Length-diameter aspect ratio 

d = diameter

yτ = matrix shear strength

Ef = fibre modulus
Ec = composite modulus

σc= composite tensile strength
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E1, E2, G12 = Elastic and shear moduli of unidirectional discontinuous fibre 
composite

Fibre orientation

Ef = Fibre modulus
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Fibre orientation, volume fraction and fibre/matrix modulus ratio 

Dependence of Normalised Composite Modulus (random 
fibres) on fibre/matrix modulus ratio and fibre volume fraction.

E1 is the Young’s modulus of a continuous unidirectional fibre 
composite in the fibre direction



Hugues (1979)
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Fibre buckling in plant cell walls 



Benefits from hierarchical structures

• Compensation for limitations of unidirectional composite
• Cellular structures possible (low density) 
• Beneficial fibre pre-stressing in tension (buckling)
• Control of swelling
• Multiple energy absorption mechanisms against fracture
• Modulation of multiple interfaces
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Layered composite structures

M. Bramwell, 1976



Hygro- or thermal expansion of angle-
ply composite structures

Individual plies with non-zero 
coefficients of thermal expansion
can create a laminate structure with 
zero thermal expansion coefficient 

Similar effects are possible with 
hygro-expansivity
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Halpin and Pagano, 1969



H. Lichtenegger et al., 2000

2Energy absorption failureEε∝

Dependence of Young’ s modulus and failure strain
in wood as a function of microfibrillar angle in S2
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Boatright & Garrett, 1983

Jeronimidis, 1978
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Glass sponge Euplectella – hierarchical architecture

Layered structure as a defense against brittle fracture

Aizenberg et al., 2005; Weaver et al., 2007; Fratzl,2010 
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Semi-ductile fracture of nacre in tension (95% brittle ceramic) resulting from 
hierarchical organisation and control of interfaces



A. Jackson and JFV Vincent, 1980
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Hierarchy of nacre



E.Baer, 1987

POLYMER MATERIAL IN TENSION

Transition  from semi-brittle to ductile 
fracture induced by layered hierarchies
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Bolton & J.A. Petty, 1975 

Jeronimidis, 1978 
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Preventing fracture from bordred pits via modulation of fibre orientation 
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GROWTH AND HIERARCHICAL STRUCTURES

(a), (b) J.R. Barnett (pers. comm.); (c) J.M. Dinwoodie, 1979

(a)

(b)

(c)



Giddings et al., 1980
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The role of microtubules for cellulose fibre organisation in cell walls
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We cannot replicate growth and all its associated control, sensing and
modulation mechanisms which lead to successful biological hierarchical structures

 However, we can extract principles of good composite design from biological   
systems  which are continuously adapting and compromising

 Introducing levels of hierarchy can provide better utilisation of fibres and achieve   
higher levels of functionality 

CONCLUSIONS



“MATERIAL” LEVEL

Fibres, Matrices, Anisotropy, Heterogeneity

FUNCTIONAL INTEGRATION AT THE “SYSTEM” LEVEL

+
“STRUCTURE” LEVEL

Hierarchies, Dimensions, Geometry, Shape
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