2012 IUFRO CONFERENCE DIVISION 5 - FOREST PRODUCTS

8>13 JULY'12 ESTORIL CONGRESS CENTRE LISBON - PORTUGAL

www.iufro2012.org

The wood fibre structure how to be utilised?

Lennart Salmén Innventia

The wood fibre as a material resource

Increasing demand for utilising wood fibres

- Cellulose;
 - replacing cotton
 - derivatives
- Hemicelluloses
 - barrier films
- Lignin
 - carbon fibres

The wood fibre structure

- Cellulose aggregation
- Polymer orientation
- Matrix polymer interactions
- Lignin/cellulose cooperation

Cellulose

- Using ability
 - accessibility
- Obstacles
 - thermodynamic preference for aggregation

Ultra-structure across cell wall

lumen side

middle lamella side

Three dimensional cellulose structure

Aggregate size distribution

Aggregate size - drying

Cellulose aggregates during cooking

Aggregation due to heat treatment

Aggregering av cellulosa

increased mobility

Effects of hemicelluloses

Structure around cellulose aggregates

Manipulation cellulose aggregate size

	Aggregate	Rewet
	thickness	zero-span
Sample	(nm)	(Nm/g)
Never Dried pulp	26.8 +/- 0.8	137 +/- 6
De-aggregated		
pulp (NaOH)	24.4 +/- 0.5	118 +/- 5
Re-aggregated		
pulp (dried)	35.0 +/- 2.5	

Tear - tensile – aggregate size

Pulping challange

- Restrict aggregation
- Increasse cellulose specific surface area

Controling aggregate size

Highly organised cellulose aggregate structure

Orientation of cellulose groups in poplar

Polarisation FTIR for molecular orientation

Glucomannan

↔ 8

810 cm⁻¹ equatorially aligned H vibration in mannose units

Orientation of glucomannan groups in softwood

Polarisation FTIR for molecular orientation

Xylan

1460 cm⁻¹ CH₂ symmetric bending on xylose units

1240 cm⁻¹ C-O stretching in carboxylic group

1734 cm⁻¹, 54° C=O stretching in carbonyl group

Orientation of xylan groups in poplar

Polarisation FTIR for molecular orientation

Lignin

1508 cm⁻¹ aromatic ring vibration

1600 cm⁻¹ aromatic ring + C - O stretch

Orientation of lignin groups in softwood – S_2

Absolute absorbance – polar diagram, spruce - S_2

Radially cut cross section of spruce

increased absorbance, arbitrary scale

IR-radiation

Absolute absorbance – polar diagram, spruce - ML

Three-dimensional lenticular structure of cell wall

Space restrictions for lignin deposition

Different types of secondary wall lignins

Softening temperature of different wood species

Lignin space

Polymer interaction - FT-IR spectroscopy

Dynamic FTIR -spectra

Wood – cellulose, lignin deformation

Interactions in the primary cell-wall

Deformation of primary wall

Lignin deformation in secondary wall

straining of the cellulose aggregate network

Cellulose – molecular deformation

1160 cm⁻¹ deformation

Cellulose main chain vibration, 1160 cm⁻¹

Cellulose chain deformation

Stretching of the hydrogen bond

3348 cm⁻¹ deformation

Deformation - OH

Cellulose chain deformation

Relation to strain

Accessible regions more or less arranged parallel to the cellulose crystalls

Accessible regions more or less arranged parallel to the cellulose crystalls

Softening in RH region

Cellulose – load bearing structure

straining of the cellulose aggregate network

Disintegration of cell wall

- Combination of;
 - Chemical -
 - Enzymatic -
 - Mechanical -

approaches

