

The Evolution of Wood Anatomical Diversity and its Significance

Pieter Baas

Contents

- A bit of history
- Wood in the living tree
- Wood diversity
- Integration of phylogenetic and ecological approaches to the study of xylem evolution
- Wood anatomy and climate change proxies for mean annual temperature in wood structure
- Conclusions

Quercus wood as seen by Grew, Malpighi and Leeuwenhoek - three functional tree biologists!

Ludwig Radlkofer (1829—1927)

1883 in Munich: The next hundred years belong to the anatomical method

Sapindaceae taxonomy & morphology (including wood anatomy)

Pinus longaeva -bristlecone pine

Hydraulic architectural types

Softwood

Diffuse-porous hardwood

Ring-porous hardwood

Tropical diffuse-porous tree (*Shorea*) and climber (*Serjania*)

Dicot Woods

Temperate diffuse-porous (*Aesculus*) and ring-porous (*Quercus*) trees

I.W. Bailey (1884— 1967)

- Xylem evolution
- Fossil woods
- Wood properties
 (preservatives)
- Tree pathology
- Wood Identification
- Cambium
- Cell wall structure
- Vestured pits

1918

Bailey & Tupper

Size variation in tracheary cells = Major trends in xylem evolution

"Inspirational"

Pieter Baas and others

or:

"Outdated and unnecessary" ??

Marc Olson – Botan. Rev. 2012 (and others)

K

Wood evolution from vesselless gymnosperms to vessel-bearing angiosperms

Division of labour

Simple and scalariform perforations

What Was The Incidence of Perforation Simple Plate Types in Geologic Past? Scalariform

Scalariform perforation & Vestured pits

Photo by S. Noshiro, Perforation Plate in Davidia

Do Vestures reduce cavitation risk?

Zweypfenning 1978

Scalariform perforations

plotted on the Soltis tree are much more common in basal clades

vestured pits (**) on Soltis tree

Ecological trends in (vestured pits and) scalariform perforations (purple)

Present-Day Woods

North America, Temperate Asia, Europe similar to one another

Tropical America, Africa, SE Asia similar to one another

< 50 μm , 50 - 100 $\mu m,$ 100 - 200 $\mu m,~>$ 200 μm --Mean Vessel Diameter

< 5 , 5 - 20, 20 - 40, > 40-- Vessels per sq. mm

Regions with high proportions of narrow vessels have low proportions of 'few vessels per sq. mm'

Vessel Mean Tangential Diameter in Trees / Small Trees / Shrubs

Triangle of wood functions and trade-offs

Summary of functional ecological trends

 In tropical - temperate - boreal - arctic gradients: Scalariform perforations become more common Element length decreases Vessel diameter decreases Vestured pits become rarer

 In mesic - xeric gradients: Scalariform perforations become very rare Element length decreases Vessel diameter decreases Vestured pits become more common

> Confounding for temperature and moisture proxies! Also clade dependent (phylogeny)

Additional Wood Anatomical Proxies for Warmer Climates

- Storied structure +
- Ring porosity
- Parenchyma rare or absent
- Paratracheal parenchyma
- Marginal parenchyma
- Septate fibres
- Homocellular rays

Wiemann et al. 1999; Wheeler et al. 1993, 2007

Scale matters!

- Within wild Olea europaea in Europe vessel density is positively related with MAT (Téral & Mengüal 1999)
- Within world flora vessel density negatively related with MAT (Wheeler et al. 2007)

Interim Conclusion No. I

- Wood anatomy contains very strong ecologically adaptive signals (temperature, water, etc.)
- Some of these signals (perforation type, vestured/nonvestured pits) also contain very strong phylogenetic signals
- Conclusion: adaptive evolution is driver of wood anatomical diversification
- Research questions have to take into account spatial, temporal, and taxonomic scales

H.J. Braun (1963, 1970)- Functional Type *Rhamnus*

Rationale for Links between Climate and Wood Evolution

- Photosynthesis ~ Gas Exchange ~ Stomatal opening ~ Transpiration
- High CO₂ ~ Low stomatal frequency ~ Lower demands on conductivity
- Climate ~ water vapour deficit ~ drought stress ~ cavitation
- Conductivity ~ 4th Power Conduit Radius ~ vessel density
- Resistance to flow: perforation plates & pit membranes
- Cavitation resistance (drought stress) : vessel diameter, vestured pits, pit membrane ultrastructure?
- Cavitation resistance (freeze-thaw cycle): vessel diameter, scalariform perforations
- Forest Canopy transpiration regulates climate
 - Jarmila Pittermann 2010

Wood Anatomy and Climate Change 1: Tree rings

Wood Anatomy and Climate Change 2: Vantage Fossil Wood example

- Rich Mid-Miocene assemblage (Wheeler & Dillhoff, 2009, IAWA Journal Supplement 7)
- Mean Annual Temperature reconstruction based on qualitative wood anatomical proxies

Vantage Woods 15.5 my, mid-Miocene

Ginkgo Petrified Forest State Park

Ginkgo Petrified Forest State Park, WA, USA = Vantage Woods

Image © 2007 NASA 2007 Europa Technologies Image © 2007 TerraMetrics

Pointer 47° 58'31.44"N 121° 42'40.54'W

Streaming || || || 100%

Eye alt 2894.18 mi

Estimating MAT ^oC using wood physiognomy

MAT = 24.78 + 36.57 (% storied rays) -15.61 (% marginal parenchyma) - 16.41 (% axial parenchyma rare to absent)

Wiemann, M.C., E.A. Wheeler, S.R. Manchester, & K.M. Portier. 1998. Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeography, Palaeoclimatology, Palaeoecology 139: 83--100.

Wiemann, M.C., S.R. Manchester, & E.A. Wheeler. 1999. Paleotemperature estimation from dicotyledonous wood characters. Palaios 14: 460--474. If treat Vantage *Fraxinus* as a tendency to storied rays, MAT estimate of **12.8** °C,

If storied rays absent, the MAT estimate is **12.1** °C

Recent Temperate Deciduous Broad-leaved Forests of China have MAT of 10 -- 14.6 °C

Recent Mixed Mesophytic Forests of China have MAT of 11.4--16.4 °C

Wang, Chi-Wu. 1961. The Forests of China. Maria Moors Cabot Foundation Publication No. 5

Past climate change inferred from leaf margins and Oxygen isotopes

AGE Million years before present (Ma)

Experimental Studies

- Increased temperature results in:
 - increased wood density
 - lower vessel diameter
 - lower flow resistance (lower sap viscosity)
- Increased CO₂ results in:
 - increased growth
 - decreased wood density
 - lower vessel diameter

Caution: limitations of short term experiments

Interim Conclusion 2

- Wood anatomy contains wealth of climatic signals from past and present
- Wood anatomical profiles of species assemblages are underutilised as environmental proxies
- Is this the full story??

Cavitation resistance

Vulnerability curves vs. P50

Lens et al. 2011. New Phytologist 190: 709-723

Acer

Lens et al. 2011. New Phytologist 190: 709-723

Tight correlation between ultrastructural IV pit characters and Mean Cav. Press. in Acer

Conclusions no. 3

- Major breakthroughs in last 10 years about understanding roles of pit membrane ultrastructure and thickness (Choat, Sano, Jansen, Lens, a.o.).
- Experimental evidence for role of other attributes: perforation type, helical wall thickenings, vessel grouping – what is more to come?
- Vessel diameter-vessel density trade-offs exist, but only explain a small fraction of efficiency-safety trade-offs!
- Vessel diameter could be fully dependent on tree size (tapering conduit model of Anfodillo)?

Special IAWA Journal Issue 2013

- Proceedings of COST-Action STREeSS and IAWA/IUFRO meeting in Naples, April 2013
- Twelve papers: reviews, new methods to observe functional traits, and integrative physiological and anatomical studies
- Guest editors Veronica de Micco, Giovanna Battipaglia and Frederic Lens

Wood Structure in Plant Biology and Ecology

edited by

Pieter Baas, Giovanna Battipaglia, Veronica De Micco, Frederic Lens, and Elisabeth Wheeler

Reprinted from IAWA Journal 34 (4), 2013 Published by the International Association of Wood Anatomists c/o Naturalis Biodiversity Center – Nationaal Herbarium Nederland

Thank You and thanks to:

- Frederic Lens
- Peter Gasson
- Elisabeth Wheeler
- Steven Jansen